Modern GIS toolkit for Python - Simplifying geospatial workflows with built-in data sources, intelligent caching, and fluent APIs
Modern GIS toolkit for Python - Simplifying geospatial workflows with built-in data sources, intelligent caching, and fluent APIs.
pip install pymapgis
import pymapgis as pmg
# Load Census data with automatic geometry
data = pmg.read("census://acs/acs5?year=2022&geography=county&variables=B25070_010E,B25070_001E")
# Calculate housing cost burden
data["cost_burden_rate"] = data["B25070_010E"] / data["B25070_001E"]
# Create interactive map
data.plot.choropleth(
column="cost_burden_rate",
title="Housing Cost Burden by County (2022)",
cmap="Reds"
).show()
Get up and running in 5 minutes. Create your first interactive map with real Census data.
Comprehensive guide covering all PyMapGIS concepts, features, and workflows.
Complete API documentation with function signatures, parameters, and examples.
Real-world examples and use cases with complete, runnable code.
Information for contributors: architecture, setup, and extending PyMapGIS.
Source | URL Pattern | Description |
---|---|---|
Census ACS | census://acs/acs5?year=2022&geography=county |
American Community Survey data |
TIGER/Line | tiger://county?year=2022&state=06 |
Census geographic boundaries |
Local Files | file://path/to/data.geojson |
Local geospatial files |
# Housing cost burden analysis
housing = pmg.read("census://acs/acs5?year=2022&geography=county&variables=B25070_010E,B25070_001E")
housing["cost_burden_rate"] = housing["B25070_010E"] / housing["B25070_001E"]
housing.plot.choropleth(column="cost_burden_rate", title="Housing Cost Burden").show()
# Labor force participation
labor = pmg.read("census://acs/acs5?year=2022&geography=county&variables=B23025_004E,B23025_003E")
labor["lfp_rate"] = labor["B23025_004E"] / labor["B23025_003E"]
labor.plot.choropleth(column="lfp_rate", title="Labor Force Participation").show()
# Population density
pop = pmg.read("census://acs/acs5?year=2022&geography=county&variables=B01003_001E")
pop["density"] = pop["B01003_001E"] / (pop.geometry.area / 2589988.11) # per sq mile
pop.plot.choropleth(column="density", title="Population Density").show()
pip install pymapgis
git clone https://github.com/pymapgis/core.git
cd core
poetry install
PyMapGIS is open source software licensed under the MIT License.
Made with β€οΈ by the PyMapGIS community